Proof Structure

- State theorem to be proved in symbolic form.
- Mark beginning with word "**Proof**:"
- Introduce initial variables and explain
 - what kind of objects they are (i.e. which set they belong to)
 - what other properties they have
- Proof body
 - start from assumptions (i.e. what is already known)
 - work step by step towards conclusion
 - justify every step with either an assumption, a previously derived step, an axiom, an already proved theorem, or a valid argument form.
- Conclusion Mark end with **Q.E.D** (quod erat demonstrandum) or ::

Cases with simple proofs

Proving Existential Statements of the form $\exists x \in D, P(x)$

1. Find an example

E.g. Some prime is a sum of 2 other primes (use 7=5+2)

2. Construct an example.

E.g. proof of the infinitude of \mathbb{N} i.e. There is no largest natural number.

Proving Universal Statements of the Form $\forall x \in D, P(x)$

- 1. If $\mathbf{D} = \emptyset$ then the statement is vacuously true (its negation, $\exists x \in \emptyset, \sim P(x)$, is false)
- 2. If D is a small set, you can use the **method of exhaustion**: prove that property is true for each element of the set one by one.

E.g. every even integer between 4 and 20 can be written as the sum of two primes

Domain Change

Proving Universal Statements of the Form $\forall x \in D, P(x) \Rightarrow Q(x)$

Note that by domain change, this is the same as $\forall x \in \{y \in D \mid P(y)\} Q(x)$. Therefore, you can simply start your proof by assuming that x has the property P, and then prove that it also has the property Q.

General Proof Methods

- Direct proofs: deduce conclusion from assumptions, axioms, lemmas, theorems and valid argument rules.
 E.g.: | is transitive.
- 2. Proofs by division into cases: if it is simpler to think of the whole problem as a collection of separate cases, prove the theorem in each of the cases, and conclude that it is true by the *division into cases*: p∨q, p→r, q→r ∴ r. E.g. any two consecutive integers have opposite parity
- 3. **Proofs by contradiction**: assume that the theorem is false and show that it leads to a contradiction; conclude that the theorem must be true by the *rule of contradiction*: $\sim p \rightarrow c \therefore p$.

E.g. If the square of an integer is even, then so is that integer.

- 4. Proof by contraposition: Note that an implication is equivalent to its contrapositive. Sometimes it is easier to prove the contrapositive.E.g. If the square of an integer is even, then so is that integer.
- 5. **Proofs by Induction**: see separate handout.

Note that you may use more than one method in a proof.

E.g. $\forall n,m \in \mathbb{N}$, m.n =1 \Rightarrow m=1 \land n=1 (contraposition and division into cases)

Methods for Disproving Statements

Disproving Existential Statements of the form $\exists x \in D, P(x)$

- 1. **Trivial case**: If $\mathbf{D} = \emptyset$ then the statement is **false**
- 2. The negation of an existential statement is a universal statement: disproving $\exists x \in D, P(x)$ is the same as proving $\forall x \in D, \sim P(x)$. Use techniques for proving universal statements.

Disproving Universal Statements of the form $\forall x \in D, P(x)$

The negation of a universal statement is an existential statement. Disproving $\forall x \in D$, P(x) is the same as proving $\exists x \in D$, $\sim P(x)$.

Use techniques for proving existential statements. If you find an example of the negation of P(x) it is called a <u>counterexample</u>.

E.g. $\forall m,n \in \mathbb{Z}, n^2=m^2 \Rightarrow m=n$ has a counterexample of n=1, m=-1